Skip to main content

REFERENCES:

Arnold, et al. (2012). Artificial food colors and attention-deficit/hyperactivity symptoms: Conclusions to dye for. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 9(3), 599-609.

Azadbakht & Esmaillzadeh. (2012). Dietary patterns and attention deficit hyperactivity disorder among Iranian children. Nutrition, 28(3), 242-249.

Galler et al. (1983). The influence of early malnutrition on subsequent behavioral development I. Degree of impairment in intellectual performance. Journal Of The American Academy Of Child And Adolescent Psychiatry, 22(1), 8-15.

Galler et al. (1983). The influence of early malnutrition on subsequent behavioral development II. Classroom behavior. Journal Of The American Academy Of Child And Adolescent Psychiatry, 22(1), 16-22.

Galler & Ramsey. (1989). A follow-up study of the influence of early malnutrition on development: Behavior at home and at school. Journal Of The American Academy Of Child And Adolescent Psychiatry, 28(2), 254-261.

Galler, Ramsey, & Solimano. (1984). The influence of early malnutrition on subsequent behavioral development III learning disabilities as a sequel to malnutrition. Pediatric Research, 18(4), 309-313.

Galler, Ramsey, & Solimano. (1985). Influence of early malnutrition on subsequent behavioral development: V. child’s behavior at home. Journal Of The American Academy Of Child Psychiatry, 24(1), 58-64.

Galler et al. (2011). Early malnutrition predicts parent reports of externalizing behaviors at ages 9-17. Nutritional Neuroscience, 14(4), 138-144.

Galler et al. (2012). Infant malnutrition predicts conduct problems in adolescents. Nutritional Neuroscience, 15(4), 186-192.

Galler et al. (2012). Infant malnutrition is associated with persisting attention deficits in middle adulthood. The Journal Of Nutrition, (4), 788.

Galler et al. (2012). Socioeconomic outcomes in adults malnourished in the first year of life: a 40-year study. Pediatrics, (1), 1.

Howard et al. (2011). ADHD Is Associated with a “Western” Dietary Pattern in Adolescents. Journal of Attention Disorders, 15(5), 403-411.

Lacy. (2004). Hyperactivity/ADHD– new solutions. AuthorHouse.

Langseth & Dowd. (1978). Glucose tolerance and hyperkinesis. Food And Cosmetics Toxicology, 16(2), 129-133.

McCann et al. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. The Lancet, 370(9598), 1560-1567.

Niederhofer. (2011). Association of Attention-Deficit/Hyperactivity Disorder and Celiac Disease: A Brief Report. Primary Care Companion For CNS Disorders, 13(3), pii: PCC.10br01104.

Park et al. (2012). Association between dietary behaviors and attention-deficit/hyperactivity disorder and learning disabilities in school-aged children. Psychiatry Research, 198, 468-476.

Stevenson et al. (2010). The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms. The American Journal of Psychiatry, 167(9), 1108-15.

Uhlig et al. (1997). Topographic mapping of brain electrical activity in children with food-induced attention deficit hyperkinetic disorder. European Journal of Pediatrics, 156(7), 557-61.

SUPPLEMENT REFERENCES

  1. Arcos-Burgos M, Jain M, Acosta MT, et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010;15(11):1053-1066. doi:10.1038/mp.2010.6
  2. Acosta MT, Swanson J, Stehli A, et al. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol Genet Genomic Med. 2016;4(5):540-547. doi:10.1002/mgg3.230
  3. Kappel DB, Schuch JB, Rovaris DL, et al. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med. 2019;21(1):60-67. doi:10.1007/s12017-019-08525-x
  4. Friedel S, Saar K, Sauer S, et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry. 2007;12(10):923-933. doi:10.1038/sj.mp.4001986
  5. Pan Y-Q, Qiao L, Xue X-D, Fu J-H. Association between ANKK1 (rs1800497) polymorphism of DRD2 gene and attention deficit hyperactivity disorder: a meta-analysis. Neurosci Lett. 2015;590:101-105. doi:10.1016/j.neulet.2015.01.076
  6. Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene. 2015;566(1):68-73. doi:10.1016/j.gene.2015.04.033
  7. Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. Medicina. 2018;54(3):32. doi:10.3390/medicina54030032
  8. Xu X, Breen G, Chen C-K, Huang Y-S, Wu Y-Y, Asherson P. Association study between a polymorphism at the 3’-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct. 2010;6:48. doi:10.1186/1744-9081-6-48
  9. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126(1):51-90. doi:10.1007/s00439-009-0694-x
  10. Sizoo B, van den Brink W, Franke B, Vasquez AA, van Wijngaarden-Cremers P, van der Gaag RJ. Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders? World J Biol Psychiatry. 2010;11(5):699-708. doi:10.3109/15622975.2010.480985
  11. Bidwell LC, Gray JC, Weafer J, Palmer A, de Wit H, MacKillop J. Genetic Influences on ADHD Symptom Dimensions: Examination of A Priori Candidates, Gene-based Tests, Genome-wide Variation, and SNP Heritability. Am J Med Genet B Neuropsychiatr Genet. 2017;174(4):458-466. doi:10.1002/ajmg.b.32535
  12. Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry. 2011;168(4):365-377. doi:10.1176/appi.ajp.2010.10070948
  13. Biederman J, Kim JW, Doyle AE, et al. Sexually dimorphic effects of four genes (COMT, SLC6A2, MAOA, SLC6A4) in genetic associations of ADHD: A preliminary study. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1511-1518. doi:10.1002/ajmg.b.30874
  14. Kopecková M, Paclt I, Petrásek J, Pacltová D, Malíková M, Zagatová V. Some ADHD polymorphisms (in genes DAT1, DRD2, DRD3, DBH, 5-HTT) in case-control study of 100 subjects 6-10 age. Neuro Endocrinol Lett. 2008;29(2):246-251.
  15. Chen X, Wang M, Zhang Q, et al. Stress response genes associated with attention deficit hyperactivity disorder: A case-control study in Chinese children. Behav Brain Res. 2019;363:126-134. doi:10.1016/j.bbr.2019.01.051
  16. Hawi Z, Tong J, Dark C, Yates H, Johnson B, Bellgrove MA. The role of cadherin genes in five major psychiatric disorders: A literature update. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2018;177(2):168-180. doi:10.1002/ajmg.b.32592
  17. Sheehan K, Lowe N, Kirley A, et al. Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry. 2005;10(10):944-949. doi:10.1038/sj.mp.4001698
  18. Ramoz N, Boni C, Downing AM, et al. A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology. 2009;34(9):2135-2142. doi:10.1038/npp.2009.39
  19. Angyal N, Horvath EZ, Tarnok Z, et al. Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):122-128. doi:10.1016/j.pnpbp.2018.01.013
  20. Dalla Vecchia E, Mortimer N, Palladino VS, et al. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from: CNTNAP2: ,: ADGRL3: , and: PARK2. Psychiatric Genetics. 2019;29(1):1–17. doi:10.1097/YPG.0000000000000211
  21. Rivero O, Selten MM, Sich S, et al. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational Psychiatry. 2015;5(10):e655-e655. doi:10.1038/tp.2015.152 
  22. Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. Hum Genet. 2009;126(1):13-50. doi:10.1007/s00439-009-0663-4
  23. Quist JF, Barr CL, Schachar R, et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Molecular Psychiatry. 2003;8(1):98-102. doi:10.1038/sj.mp.4001244
  24. Park S, Lee J-M, Kim J-W, et al. Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychol Med. 2015;45(14):3009-3017. doi:10.1017/S003329171500094X
  25. SLC6A4 Gene – GeneCards | SC6A4 Protein | SC6A4 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC6A4. Accessed March 6, 2020.
  26. SLC6A3 Gene – GeneCards | SC6A3 Protein | SC6A3 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC6A3. Accessed March 6, 2020.
  27. Turic D, Swanson J, Sonuga-Barke E. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics. Pharmgenomics Pers Med. 2010;3:61-78.
  28. Mizuno Y, Jung M, Fujisawa TX, et al. Catechol-O-methyltransferase polymorphism is associated with the cortico-cerebellar functional connectivity of executive function in children with attention-deficit/hyperactivity disorder. Scientific Reports. 2017;7(1):1-8. doi:10.1038/s41598-017-04579-8
  29. COMT gene. Genetics Home Reference. https://ghr.nlm.nih.gov/gene/COMT. Accessed March 6, 2020.
  30. Nymberg C, Jia T, Lubbe S, et al. Neural Mechanisms of Attention-Deficit/Hyperactivity Disorder Symptoms Are Stratified by MAOA Genotype. Biological Psychiatry. 2013;74(8):607-614. doi:10.1016/j.biopsych.2013.03.027
  31. Carpena MX, Hutz MH, Salatino-Oliveira A, et al. CLOCK Polymorphisms in Attention-Deficit/Hyperactivity Disorder (ADHD): Further Evidence Linking Sleep and Circadian Disturbances and ADHD. Genes (Basel). 2019;10(2). doi:10.3390/genes10020088
  32. Turic D, Swanson J, Sonuga-Barke E. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics. Pharmgenomics Pers Med. 2010;3:61–78. doi:10.2147/pgpm.s6800
  33. Kim J w., Biederman J, Arbeitman L, et al. Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2007;144B(6):781-790. doi:10.1002/ajmg.b.30522
  34. Rommelse NN, Franke B, Geurts HM, Hartman CA, Buitelaar JK. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2010;19(3):281–295. doi:10.1007/s00787-010-0092-x
  35. Newton AC, Bootman MD, Scott JD. Second Messengers. Cold Spring Harb Perspect Biol. 2016;8(8):a005926. Published 2016 Aug 1. doi:10.1101/cshperspect.a005926
  36. Lu YC, Nazarko OV, Sando R 3rd, et al. Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure. 2015;23(9):1678–1691. doi:10.1016/j.str.2015.06.024
  37. Orsini CA, Setlow B, DeJesus M, et al. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol Genet Genomic Med. 2016;4(3):322–343. Published 2016 Mar 4. doi:10.1002/mgg3.207
  38. Meyer B, Nguyen CBT, Moen A, Fagermoen E, Sulheim D, Nilsen H, et al. (2015) Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype. PLoS ONE 10(10): e0140883. https://doi.org/10.1371/journal.pone.0140883
  39. Miwa J, Echizen H, Matsueda K, Umeda N. Patients with Constipation-Predominant Irritable Bowel Syndrome (IBS) May Have Elevated Serotonin Concentrations in Colonic Mucosa as Compared with Diarrhea-Predominant Patients and Subjects with Normal Bowel Habits. DIG. 2001;63(3):188-194. doi:10.1159/000051888
  40. Kohen R, Jarrett ME, Cain KC, et al. The serotonin transporter polymorphism rs25531 is associated with irritable bowel syndrome. Dig Dis Sci. 2009;54(12):2663-2670. doi:10.1007/s10620-008-0666-3
  41. Nora T. Walter, Sebastian A. Markett, Christian Montag & Martin Reuter (2011) A genetic contribution to cooperation: Dopamine-relevant genes are associated with social facilitation, Social Neuroscience, 6:3, 289-301, DOI: 10.1080/17470919.2010.527169
  42. Jabeen S, Pinsonneault JK, Sadee W, et al. Significant association of DRD2 enhancer variant rs12364283 with heroin addiction in a Pakistani population. Annals of Human Genetics. 2019;83(5):367-372. doi:10.1111/ahg.12322
  43. Gadow KD, Pinsonneault JK, Perlman G, Sadee W. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder. Res Dev Disabil. 2014;35(7):1658-1665. doi:10.1016/j.ridd.2014.04.007
  44. Corominas R, Ribases M, Camiña M, et al. Two-stage case-control association study of dopamine-related genes and migraine. BMC Med Genet. 2009;10:95. Published 2009 Sep 21. doi:10.1186/1471-2350-10-95
  45. A Dopamine Hypothesis of Autism Spectrum Disorder – FullText – Developmental Neuroscience 2017, Vol. 39, No. 5 – Karger Publishers. Accessed May 29, 2020. https://www.karger.com/Article/FullText/478725
  46. Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv. 2000;74(2-3):265-272. doi:10.1016/s0031-6865(99)00050-3
  47. Smith TF, Anastopoulos AD, Garrett ME, et al. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2014;165(8):691-704. doi:10.1002/ajmg.b.32275
  48. NTRK3 Gene – GeneCards | NTRK3 Protein | NTRK3 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=NTRK3#expression. Accessed April 22, 2020.
  49. Reference GH. DRD3 gene. Genetics Home Reference. https://ghr.nlm.nih.gov/gene/DRD3. Accessed April 22, 2020.
  50. Ribasés M, Hervás A, Ramos-Quiroga JA, et al. Association Study of 10 Genes Encoding Neurotrophic Factors and Their Receptors in Adult and Child Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry. 2008;63(10):935-945. doi:10.1016/j.biopsych.2007.11.004
  51. Park S, Kim B-N, Kim J-W, et al. Neurotrophin 3 genotype and emotional adverse effects of osmotic-release oral system methylphenidate (OROS-MPH) in children with attention-deficit/hyperactivity disorder. J Psychopharmacol. 2014;28(3):220-226. doi:10.1177/0269881113480989
  52. Rivero O, Selten MM, Sich S, et al. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry. 2015;5(10):e655. Published 2015 Oct 13. doi:10.1038/tp.2015.152
  53. Shang, Chi-Yung, Lin, H. & Gau, S.S.. The norepinephrine transporter gene modulates intrinsic brain activity, visual memory, and visual attention in children with attention-deficit/hyperactivity disorder. Mol Psychiatry (2019). https://doi.org/10.1038/s41380-019-0545-7
  54. Sulzer, D. et al.  Mechanisms of neurotransmitter release by amphetamines: A review.  Progress in neurobiology volume 75, issue six, April 2005, pages 406 – 433. https://doi.org/10.1016/j.pneurobio.2005.04.003
  55. Arnold L. E., Amato A., Bozzolo H., et al. Acetyl-L-carnitine (ALC) in attention-deficit/hyperactivity disorder: a multi-site, placebo-controlled pilot trial. Journal of Child and Adolescent Psychopharmacology. 2007;17(6):791–801. doi: 10.1089/cap.2007.018.
  56. Torrioli M. G., Vernacotola S., Peruzzi L., et al. A double-blind, parallel, multicenter comparison of L-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. American Journal of Medical Genetics, Part A. 2008;146(7):803–812. doi: 10.1002/ajmg.a.32268.
  57. Richardson A. J., Puri B. K. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2002;26(2):233–239. doi: 10.1016/s0278-5846(01)00254-8.
  58. Konofal E., Lecendreux M., Deron J., et al. Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatric Neurology. 2008;38(1):20–26. doi: 10.1016/j.pediatrneurol.2007.08.014 
  59. Mousain-Bosc M., Roche M., Polge A., Pradal-Prat D., Rapin J., Bali J.-P. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. I. Attention deficit hyperactivity disorders. Magnesium Research. 2006;19(1):46–52.
  60. Akhondzadeh S., Mohammadi M.-R., Khademi M. Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: a double blind and randomized trial [ISRCTN64132371] BMC Psychiatry. 2004;4, article 9 doi: 10.1186/1471-244x-4-9
  61. Bilici M., Yildirim F., Kandil S., et al. Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2004;28(1):181–190. doi: 10.1016/j.pnpbp.2003.09.034.
  62. Sullivan D, Pinsonneault JK, Papp AC, et al. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene-gene-environment interaction. Transl Psychiatry. 2013;3(1):e222. Published 2013 Jan 22. doi:10.1038/tp.2012.146
  63. Zhang Y, Bertolino A, Fazio L, et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A. 2007;104(51):20552-20557. doi:10.1073/pnas.0707106104
  64. Thakur GA, Grizenko N, Sengupta SM, Schmitz N, Joober R. The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry. 2010;10(1):50. doi:10.1186/1471-244X-10-50
  65. Hinz M, Stein A, Neff R, Weinberg R, Uncini T. Treatment of attention deficit hyperactivity disorder with monoamine amino acid precursors and organic cation transporter assay interpretation. Neuropsychiatr Dis Treat. 2011;7:31-38. doi:10.2147/NDT.S16270
  66. Al-Mubarak BR, Omar A, Baz B, et al. Whole exome sequencing in ADHD trios from single and multi-incident families implicates new candidate genes and highlights polygenic transmission. European Journal of Human Genetics. Published online April 1, 2020:1-13. doi:10.1038/s41431-020-0619-7
  67. Bener A, Kamal M. Predict Attention Deficit Hyperactivity Disorder? Evidence -Based Medicine. Glob J Health Sci. 2014;6(2):47-57. doi:10.5539/gjhs.v6n2p47
  68. Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PLoS One. 2016;11(3). doi:10.1371/journal.pone.0151100
  69. Dopamine Beta Hydroxylase – an overview | ScienceDirect Topics. Accessed May 28, 2020. https://www.sciencedirect.com/topics/neuroscience/dopamine-beta-hydroxylase
  70. Garland EM, Black BK, Harris PA, Robertson D. Dopamine-beta-hydroxylase in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol. 2007;293(1):H684-690. doi:10.1152/ajpheart.01389.2006
  71. Jwaid AH, Muslem ZH, Dawood EB. Measurement the Level of Dopamine Beta Hydroxylase Enzyme in Autistic Iraqi Children. Prensa Med Argent. 2020;106:7.
  72. Kim C-H, Zabetian CP, Cubells JF, et al. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am J Med Genet. 2002;108(2):140-147.
  73. Working out boosts brain health. https://www.apa.org. Accessed May 28, 2020. https://www.apa.org/topics/exercise-stress
  74. LeClerc S, Easley D. Pharmacological therapies for autism spectrum disorder: a review. P T. 2015;40(6):389-397.
  75. Stahl SM. L-methylfolate: a vitamin for your monoamines. J Clin Psychiatry. 2008;69(9):1352-1353. doi:10.4088/jcp.v69n0901
  76. Das A, Verma A, Mukherjee KJ. Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles. Prep Biochem Biotechnol. 2017;47(8):754-760. doi:10.1080/10826068.2017.1320291
  77. Serotonin – an overview | ScienceDirect Topics. Accessed May 28, 2020. https://www.sciencedirect.com/topics/social-sciences/serotonin
  78. Kopecková M, Paclt I, Petrásek J, Pacltová D, Malíková M, Zagatová V. Some ADHD polymorphisms (in genes DAT1, DRD2, DRD3, DBH, 5-HTT) in case-control study of 100 subjects 6-10 age. Neuro Endocrinol Lett. 2008;29(2):246-251.
  79. Sullivan D, Pinsonneault JK, Papp AC, et al. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene-gene-environment interaction. Transl Psychiatry. 2013;3(1):e222. Published 2013 Jan 22. doi:10.1038/tp.2012.146
  80. Wang Y, Li A. Regulatory effects of Ningdong granule on dopaminergic and serotonergic neurotransmission in a rat model of Tourette syndrome assessed by PET. Molecular Medicine Reports. 2019;20(1):191-197. doi:10.3892/mmr.2019.10243
  81. Arcos-Burgos M, Vélez JI, Martinez AF, et al. ADGRL3 (LPHN3) variants predict substance use disorder. Transl Psychiatry. 2019;9(1):42. Published 2019 Jan 29. doi:10.1038/s41398-019-0396-7
  82. Mortimer N, Ganster T, O’Leary A, et al. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology. 2019;156:107557. doi:10.1016/j.neuropharm.2019.02.039
  83. Scott KE, Schormans AL, Pacoli KY, De Oliveira C, Allman BL, Schmid S. Altered Auditory Processing, Filtering, and Reactivity in the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders. J Neurosci. 2018;38(40):8588-8604. doi:10.1523/JNEUROSCI.0759-18.2018
  84. Poot M. Disconnecting CNTNAP2. MSY. 2016;7(3):99-100. doi:10.1159/000447002
  85. Demirci E, Özmen S, Öztop DB. Relationship between Impulsivity and Serum Oxytocin in Male Children and Adolescents with Attention-Deficit and Hyperactivity Disorder: A Preliminary Study. Noro Psikiyatr Ars. 2016;53(4):291-295. doi:10.5152/npa.2015.10284
  86. Elmer S, Jäncke L. Intracerebral functional connectivity-guided neurofeedback as a putative rehabilitative intervention for ameliorating auditory-related dysfunctions. Front Psychol. 2014;5:1227. Published 2014 Oct 29. doi:10.3389/fpsyg.2014.01227
  87. Enriquez-Geppert S, Smit D, Pimenta MG, Arns M. Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. Curr Psychiatry Rep. 2019;21(6):46. Published 2019 May 28. doi:10.1007/s11920-019-1021-4
  88. Rubia K, Criaud M, Wulff M, et al. Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. NeuroImage. 2019;188:43-58. doi:10.1016/j.neuroimage.2018.11.055
  89. Bruce SE, Werner KB, Preston BF, Baker LM. Improvements in concentration, working memory and sustained attention following consumption of a natural citicoline-caffeine beverage. Int J Food Sci Nutr. 2014;65(8):1003-1007. doi:10.3109/09637486.2014.940286
  90. Mavroconstanti T, Halmøy A, Haavik J. Decreased serum levels of adiponectin in adult attention deficit hyperactivity disorder. Psychiatry Res. 2014;216(1):123-130. doi:10.1016/j.psychres.2014.01.025
  91. Tantra M, Guo L, Kim J, et al. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors. Genes Brain Behav. 2018;17(6):e12466. doi:10.1111/gbb.12466
  92. Jiao D, Liu Y, Li X, liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Frontiers in Cellular Neuroscience. 2015;9. doi:10.3389/fncel.2015.00162
  93. Neale BM, Lasky-Su J, Anney R, et al. Genome-wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2008;147B(8):1337-1344. doi:10.1002/ajmg.b.30866
  94. Biotin anti-SNAP-25 Antibody anti-SNAP-25 – SMI 81. Accessed May 28, 2020. https://www.biolegend.com/fr-ch/products/biotin-anti-snap-25-antibody-15086
  95. Hawi Z, Matthews N, Wagner J, et al. DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One. 2013;8(4):e60274. Published 2013 Apr 12. doi:10.1371/journal.pone.0060274
  96. Zhou R, Wang J, Han X, Ma B, Yuan H, Song Y. Baicalin regulates the dopamine system to control the core symptoms of ADHD. Molecular Brain. 2019;12(1):11. doi:10.1186/s13041-019-0428-5
  97. Naveed S, Amray A, Waqas A, Chaudhary AM, Azeem MW. Use of N-Acetylcysteine in Psychiatric Conditions among Children and Adolescents: A Scoping Review. Cureus. 2017;9(11):e1888. Published 2017 Nov 29. doi:10.7759/cureus.1888
  98. Ramoz N, Boni C, Downing AM, et al. A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology. 2009;34(9):2135-2142. doi:10.1038/npp.2009.39
  99. Zhao Z, Zhang HT, Bootzin E, Millan MJ, O’Donnell JM. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology. 2009;34(6):1467-1481. doi:10.1038/npp.2008.183
  100. Shang CY, Chiang HL, Gau SS. A haplotype of the norepinephrine transporter gene (SLC6A2) is associated with visual memory in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2015;58:89-96. doi:10.1016/j.pnpbp.2014.12.010
  101. Cheon KA, Jun JY, Cho DY. Association of the catechol-O-methyltransferase polymorphism with methylphenidate response in a classroom setting in children with attention-deficit hyperactivity disorder. Int Clin Psychopharmacol. 2008;23(5):291-298. doi:10.1097/YIC.0b013e328306a977
  102. Rajput M. Natural Monoamine oxidase inhibitors?: A Review. Journal of Pharmacy Research. Published online January 1, 2010.
  103. Benton D, Young HA. A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction?. Int J Obes (Lond). 2016;40 Suppl 1(Suppl 1):S12-S21. doi:10.1038/ijo.2016.9
  104. Lee Y, Han PL. Early-Life Stress in D2 Heterozygous Mice Promotes Autistic-like Behaviors through the Downregulation of the BDNF-TrkB Pathway in the Dorsal Striatum. Exp Neurobiol. 2019;28(3):337-351. doi:10.5607/en.2019.28.3.337
  105. Gadow KD, DeVincent CJ, Siegal VI, et al. Allele-specific associations of 5-HTTLPR/rs25531 with ADHD and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:292-297. doi:10.1016/j.pnpbp.2012.10.019
  106. Odgerel Z, Talati A, Hamilton SP, Levinson DF, Weissman MM. Genotyping serotonin transporter polymorphisms 5-HTTLPR and rs25531 in European- and African-American subjects from the National Institute of Mental Health’s Collaborative Center for Genomic Studies. Translational Psychiatry. 2013;3(9):e307-e307. doi:10.1038/tp.2013.80
  107. Smeland OB, Meisingset TW, Borges K, Sonnewald U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int. 2012;61(1):100-107. doi:10.1016/j.neuint.2012.04.008
  108. Schatz KC, Brown LM, Barrett AR, Roth LC, Grinevich V, Paul MJ. Viral rescue of magnocellular vasopressin cells in adolescent Brattleboro rats ameliorates diabetes insipidus, but not the hypoaroused phenotype. Sci Rep. 2019;9(1):8243. Published 2019 Jun 3. doi:10.1038/s41598-019-44776-1
  109. Friedel S, Saar K, Sauer S, et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Molecular Psychiatry. 2007;12(10):923-933. doi:10.1038/sj.mp.4001986
  110. Cinque S, Zoratto F, Poleggi A, et al. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front Psychiatry. 2018;9:43. Published 2018 Feb 22. doi:10.3389/fpsyt.2018.00043
  111. Mortimer N, Ganster T, O’Leary A, et al. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology. 2019;156:107557. doi:10.1016/j.neuropharm.2019.02.039
  112. Hamidovic A, Dlugos A, Palmer AA, de Wit H. Polymorphisms in dopamine transporter (SLC6A3) are associated with stimulant effects of D-amphetamine: an exploratory pharmacogenetic study using healthy volunteers. Behav Genet. 2010;40(2):255-261. doi:10.1007/s10519-009-9331-7
  113. Konofal E, Arnulf I, Lecendreux M, Mouren MC. Ropinirole in a child with attention-deficit hyperactivity disorder and restless legs syndrome. Pediatr Neurol. 2005;32(5):350-351. doi:10.1016/j.pediatrneurol.2004.11.007
  114. Rubinstein S, Malone MA, Roberts W, Logan WJ. Placebo-controlled study examining effects of selegiline in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2006;16(4):404-415. doi:10.1089/cap.2006.16.404
  115. Niederhofer H. Ginkgo biloba treating patients with attention-deficit disorder. Phytother Res. 2010;24(1):26-27. doi:10.1002/ptr.2854
  116. Shakibaei F, Radmanesh M, Salari E, Mahaki B. Ginkgo biloba in the treatment of attention-deficit/hyperactivity disorder in children and adolescents. A randomized, placebo-controlled, trial. Complementary Therapies in Clinical Practice. 2015;21(2):61-67. doi:10.1016/j.ctcp.2015.04.001
  117. Lieberman HR, Georgelis JH, Maher TJ, Yeghiayan SK. Tyrosine prevents effects of hyperthermia on behavior and increases norepinephrine. Physiol Behav. 2005;84(1):33-38. doi:10.1016/j.physbeh.2004.10.023
  118. Hinz M, Stein A, Neff R, Weinberg R, Uncini T. Treatment of attention deficit hyperactivity disorder with monoamine amino acid precursors and organic cation transporter assay interpretation. Neuropsychiatr Dis Treat. 2011;7:31-38. Published 2011 Jan 26. doi:10.2147/NDT.S16270
  119. Harvey BH, Scheepers A, Brand L, Stein DJ. Chronic inositol increases striatal D(2) receptors but does not modify dexamphetamine-induced motor behavior. Relevance to obsessive-compulsive disorder. Pharmacol Biochem Behav. 2001;68(2):245-253. doi:10.1016/s0091-3057(00)00459-7
  120. Zhou, R., Wang, J., Han, X. et al. Baicalin regulates the dopamine system to control the core symptoms of ADHD. Mol Brain 12, 11 (2019). https://doi.org/10.1186/s13041-019-0428-5
  121. Jash R, Chowdary KA. Ethanolic extracts of Alstonia Scholaris and Bacopa Monniera possess neuroleptic activity due to anti-dopaminergic effect. Pharmacognosy Res. 2014;6(1):46-51. doi:10.4103/0974-8490.122917
  122. Dave UP, Dingankar SR, Saxena VS, et al. An open-label study to elucidate the effects of standardized Bacopa monnieri extract in the management of symptoms of attention-deficit hyperactivity disorder in children. Adv Mind Body Med. 2014;28(2):10-15.
  123. Banerjee R, Hazra S, Ghosh AK, Mondal AC. Chronic administration of bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig. 2014;11(3):297-306. doi:10.4306/pi.2014.11.3.297
  124. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16(4):313-326. doi:10.1089/rej.2013.1431
  125. Mathur D, Goyal K, Koul V, Anand A. The Molecular Links of Re-Emerging Therapy: A Review of Evidence of Brahmi (Bacopa monniera). Front Pharmacol. 2016;7. doi:10.3389/fphar.2016.00044
  126. Joshi K, Lad S, Kale M, et al. Supplementation with flax oil and vitamin C improves the outcome of Attention Deficit Hyperactivity Disorder (ADHD). Prostaglandins Leukot Essent Fatty Acids. 2006;74(1):17-21. doi:10.1016/j.plefa.2005.10.001
  127. Yates, Nathanael J, Dijana Tesic, Kirk W Feindel, Jeremy T Smith, Michael W Clarke, Celeste Wale, Rachael C Crew, Michaela D Wharfe, Andrew J O Whitehouse, and Caitlin S Wyrwoll. “Vitamin D is crucial for maternal care and offspring social behaviour in rats”. Journal of Endocrinology 237.2: 73-85. < https://doi.org/10.1530/JOE-18-0008>. Web. 29 May. 2020. 
  128. Nudel R, Newbury DF. FOXP2. Wiley Interdiscip Rev Cogn Sci. 2013;4(5):547-560. doi:10.1002/wcs.1247
  129. Scott KE, Schormans AL, Pacoli KY, De Oliveira C, Allman BL, Schmid S. Altered Auditory Processing, Filtering, and Reactivity in the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders. J Neurosci. 2018;38(40):8588-8604. doi:10.1523/JNEUROSCI.0759-18.2018
  130. Herman AI, Balogh KN. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse. Subst Abuse Rehabil. 2012;3(1):49-57. doi:10.2147/SAR.S25864
  131. van Rooij D, Hartman CA, van Donkelaar MM, et al. Variation in serotonin neurotransmission genes affects neural activation during response inhibition in adolescents and young adults with ADHD and healthy controls. World J Biol Psychiatry. 2015;16(8):625-634. doi:10.3109/15622975.2015.1067371 
  132. Cao J, LaRocque E, Li D. Associations of the 5-hydroxytryptamine (serotonin) receptor 1B gene (HTR1B) with alcohol, cocaine, and heroin abuse. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(2):169-176. doi:10.1002/ajmg.b.32128
  133. King CP, Militello L, Hart A, et al. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. Genes Brain Behav. 2017;16(7):686-698. doi:10.1111/gbb.12382
  134. Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res. 2016;33(8):2033-2042. doi:10.1007/s11095-016-1941-1  
  135. Gray B, Steyn F, Davies PS, Vitetta L. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management. Eur J Clin Nutr. 2013;67(12):1234-1242. doi:10.1038/ejcn.2013.197
  136. Enriquez-Geppert S, Smit D, Pimenta MG, Arns M. Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. Curr Psychiatry Rep. 2019;21(6):46. Published 2019 May 28. doi:10.1007/s11920-019-1021-4
  137. Akay AP, Kaya GC, Baykara B, et al. Atomoxetine treatment may decrease striatal dopaminergic transporter availability after 8 weeks: pilot SPECT report of three cases. Neuropsychiatr Dis Treat. 2015;11:2909-2912. Published 2015 Nov 19. doi:10.2147/NDT.S87359
  138. Wong HC, Zaman R. Neurostimulation in Treating ADHD. Psychiatr Danub. 2019;31(Suppl 3):265-275.
  139. Dlugos AM, Hamidovic A, Palmer AA, de Wit H. Further evidence of association between amphetamine response and SLC6A2 gene variants. Psychopharmacology (Berl). 2009;206(3):501-511. doi:10.1007/s00213-009-1628-y
  140. Van Oudheusden LJ, Scholte HR. Efficacy of carnitine in the treatment of children with attention-deficit hyperactivity disorder. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2002;67(1):33-38. doi:10.1054/plef.2002.0378
  141. Wang JY, Fan QY, He JH, et al. SLC6A4 Repeat and Single-Nucleotide Polymorphisms Are Associated With Depression and Rest Tremor in Parkinson’s Disease: An Exploratory Study. Front Neurol. 2019;10:333. Published 2019 Apr 9. doi:10.3389/fneur.2019.00333 
  142. Gold et al. Low Dopamine Function in Attention Deficit/Hyperactivity Disorder: should genotyping signify early diagnosis in children?  Postgrad Med. January; 126(1): 153-177
  143. Zhang, M., Ji, B., Zou, H. et al. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice. Behav Brain Funct 6, 7 (2010). https://doi.org/10.1186/1744-9081-6-7
  144. Jansen K, Hanusch B, Pross S, et al. Enhanced Nitric Oxide (NO) and Decreased ADMA Synthesis in Pediatric ADHD and Selective Potentiation of NO Synthesis by Methylphenidate. J Clin Med. 2020;9(1):175. Published 2020 Jan 8. doi:10.3390/jcm9010175
  145. Saha T, Chatterjee M, Verma D, et al. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):1-10. doi:10.1016/j.pnpbp.2018.01.016
  146. Bokor S, Meirhaeghe A, Ruiz JR, et al. Common polymorphisms in six genes of the methyl group metabolism pathway and obesity in European adolescents. Int J Pediatr Obes. 2011;6(2-2):e336-344. doi:10.3109/17477166.2010.500386
  147. Hobbs CA, Sherman SL, Yi P, et al. Polymorphisms in Genes Involved in Folate Metabolism as Maternal Risk Factors for Down Syndrome. Am J Hum Genet. 2000;67(3):623-630.
  148. Rai V, Yadav U, Kumar P, Yadav SK, Mishra OP. Maternal Methylenetetrahydrofolate Reductase C677T Polymorphism and Down Syndrome Risk: A Meta-Analysis from 34 Studies. PLOS ONE. 2014;9(9):e108552. doi:10.1371/journal.pone.010855
  149. Dutta S, Shaw J, Chatterjee A, et al. Importance of gene variants and co-factors of folate metabolic pathway in the etiology of idiopathic intellectual disability. Nutr Neurosci. 2011;14(5):202-209. doi:10.1179/1476830511Y.0000000016 
  150. Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry. 2018;8(1):242. Published 2018 Nov 5. doi:10.1038/s41398-018-0276-6
  151. Cutuli D. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging. Curr Neuropharmacol. 2017;15(4):534-542. doi:10.2174/1570159X14666160614091311 
  152. Vernes SC, Newbury DF, Abrahams BS, et al. A functional genetic link between distinct developmental language disorders. N Engl J Med. 2008;359(22):2337-2345. doi:10.1056/NEJMoa0802828
  153. Coghlan S, Horder J, Inkster B, et al. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neuroscience and Biobehavioral Reviews. 2012 Oct;36(9):2044-2055. DOI: 10.1016/j.neubiorev.2012.07.005.
  154. Salehinejad MA, Wischnewski M, Nejati V, Vicario CM, Nitsche MA. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits [published correction appears in PLoS One. 2019 Aug 20;14(8):e0221613]. PLoS One. 2019;14(4):e0215095. Published 2019 Apr 12. doi:10.1371/journal.pone.0215095
  155. R. P. Patrick, B. N. Ames. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. The FASEB Journal, 2014; DOI: 10.1096/fj.13-246546
  156. Benedetti F, Radaelli D, Bernasconi A, et al. Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav. 2008;7(1):20-25. doi:10.1111/j.1601-183X.2007.00312.x
  157. Garaulet M, Corbalán MD, Madrid JA, et al. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes (Lond). 2010;34(3):516-523. doi:10.1038/ijo.2009.255
  158. Yasuda Y, Hashimoto R, Ohi K, et al. A functional polymorphism of the GTP cyclohydrolase 1 gene predicts attention performance. Neurosci Lett. 2014;566:46-49. doi:10.1016/j.neulet.2014.02.019
  159. Sadahiro R, Suzuki A, Matsumoto Y, et al. Functional polymorphism of the GTP cyclohydrolase 1 gene affects the personality trait of novelty seeking in healthy subjects. Neurosci Lett. 2011;503(3):220-223. doi:10.1016/j.neulet.2011.08.040
  160. Antoniades C, Shirodaria C, Warrick N, et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation. 2006;114(11):1193-1201. doi:10.1161/CIRCULATIONAHA.106.612325
  161. Clelland J. Lithium Effects on Tetrahydrobiopterin Deficit in GHC1-Associated Bipolar Disorder. Accessed September 10, 2020.
  162. Nagata T, Shibata N, Shinagawa S, et al. Genetic Association between Neurotrophin-3 Polymorphisms and Alzheimer’s Disease in Japanese Patients. Dement Geriatr Cogn Dis Extra. 2013;3(1):272-280. Published 2013 Sep 7. doi:10.1159/000354369
  163. Rahman MK, Rahman F, Rahman T, Kato T. Dopamine-ß-Hydroxylase (DBH), Its Cofactors and Other Biochemical Parameters in the Serum of Neurological Patients in Bangladesh. Int J Biomed Sci. 2009;5(4):395-401.
  164. Irsfeld M, Spadafore M, Prüß BM. ß-phenylethylamine, a small molecule with a large impact. Webmedcentral. 2013;4(9):4409.
  165. Nascimento P. et al. Single nucleotide polymorphisms in the CNTNAP2 gene in Brazilian patients with autism spectrum disorder. Genetics and Molecular Research March 2016 10.4238/gmr.15017422
  166. Maltezos, S. et al. Glutamate/glutamine and neuronal integrity in adults withADHD: a proton MRS study. Transl Psychiatry (2014)4, e373; doi:10.1038/tp.2014.11© 2014  2158-3188/14
  167. White, T.L., Monnig, M.A., Walsh, E.G. et al. Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans. Neuropsychopharmacol 43, 1498–1509 (2018). https://doi.org/10.1038/s41386-018-0027-7 
  168. Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J. 2007;26(8):2127-2136. doi:10.1038/sj.emboj.7601656  
  169. Bidwell LC et al. ADHD symptoms impact smoking outcomes and withdrawal in response to varenicline treatment for smoking cessation. Drug Alcohol Depend 2017 Jul 18; 179:18.http://dx.doi.org/10.1016/j.drugalcdep.2017.06.020
  170. Smith CT, San Juan MD, Dang LC, et al. Ventral striatal dopamine transporter availability is associated with lower trait motor impulsivity in healthy adults. Transl Psychiatry. 2018;8(1):269. Published 2018 Dec 7. doi:10.1038/s41398-018-0328-y
  171. Mohammadi M, Tahmasebi Abdar H, Mollaei HR, Hajghani H, Baneshi MR, Hayatbakhsh MM. Serotonin Transporter Gene (SLC6A4) Polymorphism and Mucosal Serotonin Levels in Southeastern Iranian Patients with Irritable Bowel Syndrome. Middle East J Dig Dis. 2017;9(1):26-32. doi:10.15171/mejdd.2016.48 
  172. El Baza F, AlShahawi HA, Zahra S, AbdelHakim RA. Magnesium supplementation in children with attention deficit hyperactivity disorder. Egyptian Journal of Medical Human Genetics. 2016;17(1):63-70. doi:10.1016/j.ejmhg.2015.05.008
  173. Saha T, Chatterjee M, Verma D, et al. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):1-10. doi:10.1016/j.pnpbp.2018.01.016
  174. Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1a and mitochondria by Ca 2+ and AMPK/SIRT1. Nature. 2010;464(7293):1313-1319. doi:10.1038/nature08991
  175. McCormack D, McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev. 2013;2013:575482. doi:10.1155/2013/575482
  176. Achari AE, Jain SK. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci. 2017;18(6):1321. Published 2017 Jun 21. doi:10.3390/ijms18061321
  177. Austin C, Curtin P, Curtin A, et al. Dynamical properties of elemental metabolism distinguish attention deficit hyperactivity disorder from autism spectrum disorder. Translational Psychiatry. 2019;9(1):1-9. doi:10.1038/s41398-019-0567-6
  178. Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci. 2016;8. doi:10.3389/fnsyn.2016.00007
  179. McAllister TW. Genetic factors in traumatic brain injury. Handb Clin Neurol. 2015;128:723-739. doi:10.1016/B978-0-444-63521-1.00045-5 
  180. Chung J-Y, Kim M-W, Im W, Hwang IK, Bang M-S, Kim M. Expression of Neurotrophin-3 and trkC following Focal Cerebral Ischemia in Adult Rat Brain with Treadmill Exercise. BioMed Research International. doi:https://doi.org/10.1155/2017/9248542
  181. Logan RW, Williams WP 3rd, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci. 2014;128(3):387-412. doi:10.1037/a0036268
  182. Dorrego MF, Canevaro L, Kuzis G, Sabe L, Starkstein SE. A randomized, double-blind, crossover study of methylphenidate and lithium in adults with attention-deficit/hyperactivity disorder: preliminary findings. J Neuropsychiatry Clin Neurosci. 2002;14(3):289-295. doi:10.1176/jnp.14.3.289 
  183. McGough JJ, Sturm A, Cowen J, Tung K, Salgari GC, Leuchter AF, Cook IA, Sugar CA, Loo SK. Double-
  184. Hong SB, Zalesky A, Park S, et al. COMT genotype affects brain white matter pathways in attention-deficit/hyperactivity disorder. Hum Brain Mapp. 2015;36(1):367-377. doi:10.1002/hbm.22634
  185. Cox CJ, Sharma M, Leckman JF, et al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J Immunol. 2013;191(11):5524-5541. doi:10.4049/jimmunol.1102592
  186. Kollins SH, Adcock RA. ADHD, altered dopamine neurotransmission, and disrupted reinforcement processes: implications for smoking and nicotine dependence. Prog Neuropsychopharmacol Biol Psychiatry. 2014;52:70-78. doi:10.1016/j.pnpbp.2014.02.002
  187. ANKK1 – an overview | ScienceDirect Topics. Accessed October 19, 2020. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ankk1
  188. Monoamine Oxidase A – an overview | ScienceDirect Topics. Accessed October 19, 2020. https://www.sciencedirect.com/topics/neuroscience/monoamine-oxidase-a
  189. Xu X, Brookes K, Chen CK, Huang YS, Wu YY, Asherson P. Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples. BMC Psychiatry. 2007;7:10. Published 2007 Feb 28. doi:10.1186/1471-244X-7-10
  190. Karmakar A, Goswami R, Saha T, et al. Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC Med Genet. 2017;18(1):109. Published 2017 Oct 5. doi:10.1186/s12881-017-0469-5
  191. Herraiz T, Guillén H. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions. BioMed Research International. doi:https://doi.org/10.1155/2018/4810394
  192. HTR1B 5-hydroxytryptamine receptor 1B [Homo sapiens (human)] – Gene – NCBI. Accessed October 19, 2020. https://www.ncbi.nlm.nih.gov/gene/3351
  193. Biederman J, Lindsten A, Sluth LB, et al. Vortioxetine for attention deficit hyperactivity disorder in adults: A randomized, double-blind, placebo-controlled, proof-of-concept study. J Psychopharmacol. 2019;33(4):511-521. doi:10.1177/0269881119832538
  194. Tiger M, Varnäs K, Okubo Y, Lundberg J. The 5-HT1B receptor – a potential target for antidepressant treatment. Psychopharmacology (Berl). 2018;235(5):1317-1334. doi:10.1007/s00213-018-4872-1
  195. Gerbino A, Russo D, Colella M, et al. Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells. Int J Mol Sci. 2018;19(4):1112. Published 2018 Apr 7. doi:10.3390/ijms19041112
  196. Nautiyal KM, Tritschler L, Ahmari SE, David DJ, Gardier AM, Hen R. A Lack of Serotonin 1B Autoreceptors Results in Decreased Anxiety and Depression-Related Behaviors. Neuropsychopharmacology. 2016;41(12):2941-2950. doi:10.1038/npp.2016.109
  197. Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018;87:255-270. doi:10.1016/j.neubiorev.2018.02.001
  198. Pan Q, Zhang X, Zhang L, et al. Solute Carrier Organic Anion Transporter Family Member 3A1 Is a Bile Acid Efflux Transporter in Cholestasis. Gastroenterology. 2018;155(5):1578-1592.e16. doi:10.1053/j.gastro.2018.07.031
  199. Bilgiç A, Toker A, Uysal S. Exploratory study to evaluate plasma vasopressin and apelin-13 levels in children with attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci. 2016;70(10):442-447. doi:10.1111/pcn.12415
  200. Oztan O, Garner JP, Partap S, et al. Cerebrospinal fluid vasopressin and symptom severity in children with autism. Ann Neurol. 2018;84(4):611-615. doi:10.1002/ana.25314
  201. Essential Amino Acids – an overview | ScienceDirect Topics. Accessed October 19, 2020. https://www.sciencedirect.com/topics/neuroscience/essential-amino-acids
  202. Verlaet AAJ, Maasakkers CM, Hermans N, Savelkoul HFJ. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients. 2018;10(4):405. Published 2018 Mar 24. doi:10.3390/nu10040405 
  203. Mazi TA, Sarode GV, Czlonkowska A, et al. Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci. 2019;20(23):5937. Published 2019 Nov 26. doi:10.3390/ijms20235937
  204. Yektas Ç, Alpay M, Tufan AE. Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatr Dis Treat. 2019;15:2213-2219. Published 2019 Aug 6. doi:10.2147/NDT.S212361
  205. Tetrahydrobiopterin deficiency: MedlinePlus Genetics. Accessed October 19, 2020. https://medlineplus.gov/genetics/condition/tetrahydrobiopterin-deficiency/
  206. Baker TA, Milstien S, Katusic ZS. Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells. J Cardiovasc Pharmacol. 2001;37(3):333-338. doi:10.1097/00005344-200103000-00012
  207. Wal P, Saraswat N, Pal RS, Wal A, Chaubey M. A Detailed Insight of the Anti-inflammatory Effects of Curcumin with the Assessment of Parameters, Sources of ROS and Associated Mechanisms. Open Medicine Journal. 2019;6(1). doi:10.2174/1874220301906010064
  208. Huang-Pollock CL, Karalunas SL, Tam H, Moore AN. Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance [published correction appears in J Abnorm Psychol. 2012 May;121(2):423]. J Abnorm Psychol. 2012;121(2):360-371. doi:10.1037/a0027205
  209. Liu M, Huo YR, Wang J, et al. Polymorphisms of the neurotrophic factor-3 (NTF-3) in Alzheimer’s disease: rs6332 associated with onset time and rs6489630 T allele exhibited a protective role. J Neurogenet. 2015;29(4):183-187. doi:10.3109/01677063.2015.1099651
  210. Conner AC, Kissling C, Hodges E, et al. Neurotrophic factor-related gene polymorphisms and adult attention deficit hyperactivity disorder (ADHD) score in a high-risk male population. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1476-1480. doi:10.1002/ajmg.b.30632
  211. Cho SC, Kim HW, Kim BN, et al. Neurotrophin-3 gene, intelligence, and selective attention deficit in a Korean sample with attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1065-1069. doi:10.1016/j.pnpbp.2010.05.026
  212. Corominas-Roso M, Ramos-Quiroga JA, Ribases M, et al. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;16(6):1267-1275. doi:10.1017/S1461145712001629
  213. Tsai SJ. Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine Growth Factor Rev. 2017;34:35-41. doi:10.1016/j.cytogfr.2016.11.003
  214. Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function. J Biomed Sci. 2016;23:17. Published 2016 Jan 25. doi:10.1186/s12929-016-0241-8
  215. Kheirvari S, Uezu K, Yamamoto S, Nakaya Y. High-dose dietary supplementation of vitamin A induces brain-derived neurotrophic factor and nerve growth factor production in mice with simultaneous deficiency of vitamin A and zinc. Nutr Neurosci. 2008;11(5):228-234. doi:10.1179/147683008X301603
  216. Ciliary Neurotrophic Factor – an overview | ScienceDirect Topics. Accessed October 19, 2020. https://www.sciencedirect.com/topics/neuroscience/ciliary-neurotrophic-factor
  217. Beurrier C, Faideau M, Bennouar K-E, et al. Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake. PLOS ONE. 2010;5(1):e8550. doi:10.1371/journal.pone.0008550
  218. Carrillo-de Sauvage MA, Flament J, Bramoulle Y, et al. The neuroprotective agent CNTF decreases neuronal metabolites in the rat striatum: an in vivo multimodal magnetic resonance imaging study. J Cereb Blood Flow Metab. 2015;35(6):917-921. doi:10.1038/jcbfm.2015.48
  219. Skripuletz T, Linker RA, Stangel M. The choline pathway as a strategy to promote central nervous system (CNS) remyelination. Neural Regen Res. 2015;10(9):1369-1370. doi:10.4103/1673-5374.165498
  220. Sá T, Silva FM, Magalhães P, Martins V, Barrias P. Psychotic symptoms during stimulant treatment for attention-deficit/hyperactivity disorder. Nascer e Crescer. 2020;29(1):23-28. doi:10.25753/BirthGrowthMJ.v29.i1.18081 
  221. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27(5):699-711. doi:10.1016/S0893-133X(02)00346-9
  222. Fedder D, Patel H, Saadabadi A. Atomoxetine. In: StatPearls. StatPearls Publishing; 2020. Accessed October 19, 2020. http://www.ncbi.nlm.nih.gov/books/NBK493234/
  223. Adler LA, Gorny SW. Pilot Study of Droxidopa With Carbidopa in Adults With ADHD. J Atten Disord. 2019;23(2):189-198. doi:10.1177/1087054715580393
  224. McDonell KE, Shibao CA, Biaggioni I, Hartman A, Robertson D, Claassen DO. Cognitive and Behavioral Changes in Patients Treated With Droxidopa for Neurogenic Orthostatic Hypotension: A Retrospective Review. Cogn Behav Neurol. 2019;32(3):179-184. doi:10.1097/WNN.0000000000000198
  225. Culpepper L. Reducing the Burden of Difficult-to-Treat Major Depressive Disorder: Revisiting Monoamine Oxidase Inhibitor Therapy. Prim Care Companion CNS Disord. 2013;15(5):PCC.13r01515. doi:10.4088/PCC.13r01515 
  226. Sub Laban T, Saadabadi A. Monoamine Oxidase Inhibitors (MAOI). In: StatPearls. StatPearls Publishing; 2020. Accessed October 19, 2020. http://www.ncbi.nlm.nih.gov/books/NBK539848/
  227. Rybak YE, McNeely HE, Mackenzie BE, Jain UR, Levitan RD. An open trial of light therapy in adult attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2006;67(10):1527-1535. doi:10.4088/jcp.v67n1006
  228. Tomko RL, Jones JL, Gilmore AK, Brady KT, Back SE, Gray KM. N-acetylcysteine: A potential treatment for substance use disorders. Curr Psychiatr. 2018;17(6):30-55.
  229. Wink LK, Adams R, Wang Z, et al. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder. Mol Autism. 2016;7:26. Published 2016 Apr 21. doi:10.1186/s13229-016-0088-6 
  230. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review. Nutrients. 2016;8(2):68. Published 2016 Jan 27. doi:10.3390/nu8020068
  231. Dolina S, Margalit D, Malitsky S, Rabinkov A. Attention-deficit hyperactivity disorder (ADHD) as a pyridoxine-dependent condition: urinary diagnostic biomarkers. Med Hypotheses. 2014;82(1):111-116. doi:10.1016/j.mehy.2013.11.018
  232. Sowa-Kucma M, Szewczyk B, Sadlik K, et al. Zinc, magnesium and NMDA receptor alterations in the hippocampus of suicide victims. J Affect Disord. 2013;151(3):924-931. doi:10.1016/j.jad.2013.08.009
  233. Arons MH, Lee K, Thynne CJ, et al. Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. J Neurosci. 2016;36(35):9124-9134. doi:10.1523/JNEUROSCI.0116-16.2016
  234. Li JJ, Li ZW, Wang SZ, et al. Ningdong granule: a complementary and alternative therapy in the treatment of attention deficit/hyperactivity disorder. Psychopharmacology (Berl). 2011;216(4):501-509. doi:10.1007/s00213-011-2238-z   
  235. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66(9):1673-1680. doi:10.1016/s0006-2952(03)00556-2 https://pubmed.ncbi.nlm.nih.gov/14563478/
  236. Akay AP, Kaya GC, Baykara B, et al. Atomoxetine treatment may decrease striatal dopaminergic transporter availability after 8 weeks: pilot SPECT report of three cases. Neuropsychiatr Dis Treat. 2015;11:2909-2912. doi:10.2147/NDT.S87359
  237. Lakhan SE, Vieira KF. Nutritional therapies for mental disorders. Nutr J. 2008;7:2. doi:10.1186/1475-2891-7-2
  238. Synoradzki K, Grieb P. Citicoline: A Superior Form of Choline? Nutrients. 2019;11(7). doi:10.3390/nu11071569
  239. Kuygun Karci C, Gül Celik G. Nutritional and herbal supplements in the treatment of obsessive compulsive disorder. Gen Psychiatr. 2020;33(2). doi:10.1136/gpsych-2019-100159
  240. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13-22. doi:10.1016/j.neuroscience.2014.01.025
  241. Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2018;177(2):181-198. doi:10.1002/ajmg.b.32599
  242. Seo D, Patrick CJ, Kennealy PJ. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggress Violent Behav. 2008;13(5):383-395. doi:10.1016/j.avb.2008.06.003 
  243. Foods highest in Tyrosine. Accessed August 25, 2020. https://nutritiondata.self.com/foods-000087000000000000000-2.html?  
  244. Foods highest in Tyrosine in Vegetables and Vegetable Products. Accessed August 26, 2020. https://nutritiondata.self.com/foods-011087000000000000000-1.html  
  245. Leventhal AM, Kirkpatrick MG, Pester MS, McGeary JE, Swift RM, Sussman S, Kahler CW. Pharmacogenetics of stimulant abuse liability: association of CDH13 variant with amphetamine response in a racially-heterogeneous sample of healthy young adults. Psychopharmacology (Berl). 2017 Jan;234(2):307-315. doi: 10.1007/s00213-016-4462-z. Epub 2016 Oct 22. PMID: 27771748.
  246. Wang C, Yang B, Fang D, et al. The impact of SNAP25 on brain functional connectivity density and working memory in ADHD. Biol Psychol. 2018;138:35-40. doi:10.1016/j.biopsycho.2018.08.005
  247. Bronk P, Deák F, Wilson MC, Liu X, Südhof TC, Kavalali ET. Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. J Neurophysiol. 2007 Aug;98(2):794-806. doi: 10.1152/jn.00226.2007. Epub 2007 Jun 6. PMID: 17553942.
  248. Schaafsma SM, Gagnidze K, Reyes A, et al. Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci U S A. 2017;114(6):1383-1388. doi:10.1073/pnas.1619312114
  249. Huang Y, Grailhe R, Arango V, Hen R, Mann JJ. Relationship of Psychopathology to the Human Serotonin 1B Genotype and Receptor Binding Kinetics in Postmortem Brain Tissue. Neuropsychopharmacology. 1999;21(2):238-246. doi:10.1016/S0893-133X(99)00030-5
  250. Fehske CJ, Leuner K, Müller WE. Ginkgo biloba extract (EGb761) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res. 2009 Jul;60(1):68-73. doi: 10.1016/j.phrs.2009.02.012. Epub 2009 Mar 21. PMID: 19427589.
  251. Arnold LE, Disilvestro RA, Bozzolo D, et al. Zinc for attention-deficit/hyperactivity disorder: placebo-controlled double-blind pilot trial alone and combined with amphetamine. J Child Adolesc Psychopharmacol. 2011;21(1):1-19. doi:10.1089/cap.2010.0073
  252. Office of Dietary Supplements – Dietary Supplement Fact Sheet: Vitamin B6. https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/. Accessed July 25, 2018.
  253. Almeida MR, Mabasa L, Crane C, Park CS, Venâncio VP, Bianchi ML, Antunes LM. Maternal vitamin B6 deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring. Mol Nutr Food Res. 2016 Jul;60(7):1615-24. doi: 10.1002/mnfr.201500950. Epub 2016 Mar 29. PMID: 26935476.
  254. Di X, Yan J, Zhao Y, Chang Y, Zhao B. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway. Sci China Life Sci. 2012 Dec;55(12):1064-74. doi: 10.1007/s11427-012-4401-0. Epub 2012 Dec 12. PMID: 23233221.
  255. Kahathuduwa C, Wakefield S, West B, Blume J, Mastergeorge A. L-theanine and Caffeine Improve Sustained Attention, Impulsivity and Cognition in Children with Attention Deficit Hyperactivity Disorders by Decreasing Mind Wandering (OR29-04-19). Curr Dev Nutr. 2019;3(Suppl 1):nzz031.OR29-04-19. Published 2019 Jun 13. doi:10.1093/cdn/nzz031.OR29-04-19
  256. Li Y, Yu L, Zhao L, Zeng F, Liu Q. Resveratrol modulates cocaine-induced inhibitory synaptic plasticity in VTA dopamine neurons by inhibiting phosphodiesterases (PDEs). Scientific Reports. 2017;7(1):15657. doi:10.1038/s41598-017-16034-9
  257. Knisely MR, Conley YP, Kober KM, Smoot B, Paul SM, Levine JD, Miaskowski C. Associations Between Catecholaminergic and Serotonergic Genes and Persistent Breast Pain Phenotypes After Breast Cancer Surgery. J Pain. 2018 Oct;19(10):1130-1146. doi: 10.1016/j.jpain.2018.04.007. Epub 2018 Apr 30. PMID: 29723560.
  258. Gromball J, Beschorner F, Wantzen C, Paulsen U, Burkart M. Hyperactivity, concentration difficulties and impulsiveness improve during seven weeks’ treatment with valerian root and lemon balm extracts in primary school children. Phytomedicine. 2014 Jul-Aug;21(8-9):1098-103. doi: 10.1016/j.phymed.2014.04.004. Epub 2014 May 15. PMID: 24837472.
  259. Candelario M, Cuellar E, Reyes-Ruiz JM, Darabedian N, Feimeng Z, Miledi R, Russo-Neustadt A, Limon A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABA? receptors. J Ethnopharmacol. 2015 Aug 2;171:264-72. doi: 10.1016/j.jep.2015.05.058. Epub 2015 Jun 9. PMID: 26068424.
  260. Gonzalez-Lopez E, Kawasawa-Imamura Y, Zhang L, et al. A single nucleotide polymorphism in dopamine beta hydroxylase (rs6271(C>T)) is over-represented in inflammatory bowel disease patients and reduces circulating enzyme. PLoS One. 2019;14(2):e0210175. Published 2019 Feb 28. doi:10.1371/journal.pone.0210175
  261. Crunelle CL, Schulz S, de Bruin K, Miller ML, van den Brink W, Booij J. Dose-dependent and sustained effects of varenicline on dopamine D2/3 receptor availability in rats. Eur Neuropsychopharmacol. 2011;21(2):205-210. doi:10.1016/j.euroneuro.2010.11.001
  262. Lee LO, Prescott CA. Association of the catechol-O-methyltransferase val158met polymorphism and anxiety-related traits: a meta-analysis. Psychiatr Genet. 2014;24(2):52-69. doi:10.1097/YPG.0000000000000018
  263. Cao C, Wang M, Ji L, Wei X, Cao Y, & Zhang, W. (2016). The MAOA rs6323 polymorphism interacts with maternal supportive parenting in predicting adolescent depression: Testing the diathesis-stress and differential susceptibility hypotheses. Acta Psychologica Sinica. 2016. 48(1), 22–35. https://doi.org/10.3724/SP.J.1041.2016.00022
  264. Kolla NJ, Vinette SA. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder. Curr Behav Neurosci Rep. 2017;4(1):41-48. doi:10.1007/s40473-017-0102-0
  265. Singhal HK, Neetu, Kumar A, Rai M. Ayurvedic approach for improving reaction time of attention deficit hyperactivity disorder affected children. Ayu. 2010;31(3):338-342. doi:10.4103/0974-8520.77169
  266. Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8(5 Suppl):208-213. doi:10.4314/ajtcam.v8i5S.9
  267. Lesch KP. Editorial: Can dysregulated myelination be linked to ADHD pathogenesis and persistence?. J Child Psychol Psychiatry. 2019;60(3):229-231. doi:10.1111/jcpp.13031
  268. Moriguchi Y, Hiraki K. Prefrontal cortex and executive function in young children: a review of NIRS studies. Front Hum Neurosci. 2013;7. doi:10.3389/fnhum.2013.00867
  269. Giménez R, Raïch J, Aguilar J. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice. Br J Pharmacol. 1991;104(3):575-578. doi:10.1111/j.1476-5381.1991.tb12471.xfgim
  270. Wang P, Heber D, Henning SM. Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct. 2012;3(6):635-642. doi:10.1039/c2fo10254d
  271. Zhu BT, Liehr JG. Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J Biol Chem. 1996;271(3):1357-1363.
  272. Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(2):152-171. doi:10.1002/ajmg.b.32023
  273. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016;39(11):763-781. doi:10.1016/j.tins.2016.09.002
  274. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-276. doi:10.1016/j.cell.2015.02.047
  275. Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric Research. 2015;77(6):823-828. doi:10.1038/pr.2015.51
  276. Ahn J, Ahn HS, Cheong JH, Dela Peña I. Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy. Neural Plast. 2016;2016:1320423. doi:10.1155/2016/1320423
  277. Gromball, J., Beschorner, F. et al. Hyperactivity, concentration difficulties and impulsiveness improve during seven weeks’ treatment with valerian root and lemon balm extracts in primary school children,

Phytomedicine, Volume 21, Issues 8–9, 2014, Pages 1098-1103

  1. Trebatická J, Kopasová S, Hradecná Z, et al. Treatment of ADHD with French maritime pine bark extract, Pycnogenol. Eur Child Adolesc Psychiatry. 2006;15(6):329-335. doi:10.1007/s00787-006-0538-3
  2. Zhang XR, Wang YX, Zhang ZJ, Li L, Reynolds GP. The Effect of Chronic Antipsychotic Drug on Hypothalamic Expression of Neural Nitric Oxide Synthase and Dopamine D2 Receptor in the Male Rat. PLOS ONE. 2012;7(4):e33247. doi:10.1371/journal.pone.0033247
  3. Herrlinger KA, Nieman KM, Sanoshy KD, et al. Spearmint Extract Improves Working Memory in Men and Women with Age-Associated Memory Impairment. J Altern Complement Med. 2018;24(1):37-47. doi:10.1089/acm.2016.0379
  4. Falcone PH, Nieman KM, Tribby AC, et al. The attention-enhancing effects of spearmint extract supplementation in healthy men and women: a randomized, double-blind, placebo-controlled, parallel trial. Nutrition Research (New York, N.Y.). 2019 Apr;64:24-38. DOI: 10.1016/j.nutres.2018.11.012.
  5. Zhao J, Jin KK, Wu L, Chen GR, Li JM. [Effects of extract of ginkgo biloba on learning and memory ability and NGF and NT-3 expression in diabetic rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2012 Sep;28(5):467-71. Chinese. PMID: 23252308.
  6. Puttarak, P., Dilokthornsakul, P., Saokaew, S. et al. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: A Systematic Review and Meta-analysis. Sci Rep 7, 10646 (2017). https://doi.org/10.1038/s41598-017-09823-9
  7. Ar Rochmah M, Harini IM, Septyaningtrias DE, Sari DCR, Susilowati R. Centella asiatica Prevents Increase of Hippocampal Tumor Necrosis Factor-a Independently of Its Effect on Brain-Derived Neurotrophic Factor in Rat Model of Chronic Stress. Biomed Res Int. 2019 Mar 6;2019:2649281. doi: 10.1155/2019/2649281. PMID: 30956976; PMCID: PMC6431365.
  8. https://reactome.org/content/detail/R-HSA-9025046. accessed 1/24/21
  9. Ariyani W, Miyazaki W, Amano I, Koibuchi N. SAT-708 The Effect of Soybean Isoflavones in Developing Cerebellum. J Endocr Soc. 2020;4(Suppl 1):SAT-708. Published 2020 May 8. doi:10.1210/jendso/bvaa046.181
  10. Uddin Md. Sahab, Kabir Md. Tanvir.   Emerging Signal Regulating Potential of Genistein Against Alzheimer’s Disease: A Promising Molecule of Interest.   Frontiers in Cell and Developmental Biology    Vol 7, 2019. 197
  11. 288. Frye RE, Huffman LC, Elliott GR. Tetrahydrobiopterin as a novel therapeutic intervention for autism. Neurotherapeutics. 2010 Jul;7(3):241-9. doi: 10.1016/j.nurt.2010.05.004. PMID: 20643376; PMCID: PMC2908599. 
  12. Coben R, Middlebrooks M, Lightstone H, Corbell M. Four Channel Multivariate Coherence Training: Development and Evidence in Support of a New Form of Neurofeedback. Front Neurosci. 2018;12:729. Published 2018 Oct 11. doi:10.3389/fnins.2018.00729 
  13. de Assis GG, de Almondes KM. Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review. Front Psychol. 2017;8:584. Published 2017 Apr 19. doi:10.3389/fpsyg.2017.00584
  14. Pontifex MB, Saliba BJ, Raine LB, Picchietti DL, Hillman CH. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J Pediatr. 2013;162(3):543-551. doi:10.1016/j.jpeds.2012.08.036
  15. Mazzeo RS, Brooks GA, Butterfield GE, Podolin DA, Wolfel EE, Reeves JT. Acclimatization to high altitude increase muscle sympathetic activity both at rest and during exercise. Am J Physiol. 1995;269(1 Pt 2):R201-R207. doi:10.1152/ajpregu.1995.269.1.R201
  16. Mirmiran P, Hosseini S, Hosseinpour-Niazi S, Azizi F. Legume consumption increase adiponectin concentrations among type 2 diabetic patients: A randomized crossover clinical trial. Endocrinol Diabetes Nutr (Engl Ed). 2019 Jan;66(1):49-55. English, Spanish. doi: 10.1016/j.endinu.2018.07.003. Epub 2018 Sep 25. PMID: 30266593.
  17. Varela RB, Valvassori SS, Lopes-Borges J, et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res. 2015;61:114-121. doi:10.1016/j.jpsychires.2014.11.003
  18. Bastos P, Araújo JR, Azevedo I, Martins MJ, Ribeiro L. Effect of a natural mineral-rich water on catechol-O-methyltransferase function. Magnes Res. 2014;27(3):131-141. doi:10.1684/mrh.2014.0369
  19. Wilens TE, Haight BR, Horrigan JP, et al. Bupropion XL in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled study. Biol Psychiatry. 2005;57(7):793-801. doi:10.1016/Wilens TE, Haight BR, Horrigan JP, et al. Bupropion XL in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled study. Biol Psychiatry. 2005;57(7):793-801. doi:10.1016/j.biopsych.2005.01.027
  20. Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S. A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6(4):159-166. doi:10.4088/pcc.v06n0403
  21. Padayatty SJ, Doppman JL, Chang R, et al. Human adrenal glands secrete vitamin C in response to adrenocorticotrophic hormone. Am J Clin Nutr. 2007;86(1):145-149. doi:10.1093/ajcn/86.1.145
  22. Perucki WH, Hiendlmayr B, O’Sullivan DM, Gunaseelan AC, Fayas F, Fernandez AB. Magnesium Levels and Neurologic Outcomes in Patients Undergoing Therapeutic Hypothermia After Cardiac Arrest. Ther Hypothermia Temp Manag. 2018;8(1):14-17. doi:10.1089/ther.2017.0016
  23. Davinelli S, Chiosi F, Di Marco R, Costagliola C, Scapagnini G. Cytoprotective Effects of Citicoline and Homotaurine against Glutamate and High Glucose Neurotoxicity in Primary Cultured Retinal Cells. Oxid Med Cell Longev. 2017;2017:2825703. doi:10.1155/2017/2825703
  24. Elsas SM, Rossi DJ, Raber J, et al. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine. 2010;17(12):940-949. doi:10.1016/j.phymed.2010.03.002
  25. Yuan CS, Mehendale S, Xiao Y, Aung HH, Xie JT, Ang-Lee MK. The gamma-aminobutyric acidergic effects of valerian and valerenic acid on rat brainstem neuronal activity. Anesth Analg. 2004;98(2):353-358. doi:10.1213/01.ANE.0000096189.70405.A5
  26. Scholey A, Gibbs A, Neale C, et al. Anti-stress effects of lemon balm-containing foods. Nutrients. 2014;6(11):4805-4821. Published 2014 Oct 30. doi:10.3390/nu6114805
  27. Kim S, Jo K, Hong KB, Han SH, Suh HJ. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. Pharm Biol. 2019;57(1):65-73. doi:10.1080/13880209.2018.1557698
  28. Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry. 2020;20(1):315. Published 2020 Jun 18. doi:10.1186/s12888-020-02730-w
  29. Birdsall TC. 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev. 1998;3(4):271-280.
  30. Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet?. Nutr Metab (Lond). 2007;4:24. Published 2007 Nov 6. doi:10.1186/1743-7075-4-24
  31. Raigani M, Lakpour N, Soleimani M, Johari B, Sadeghi MR. A Association of MTHFR C677T and MTRR A66G Gene Polymorphisms with Iranian Male Infertility and Its Effect on Seminal Folate and Vitamin B12. Int J Fertil Steril. 2021;15(1):20-25. doi:10.22074/ijfs.2021.6155
  32. Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451-456. doi:10.1016/s0021-9150(00)00739-5
  33. Nazarian RS, Lamb AJ. Psoriatic flare after the concomitant administration of L-methylfolate and methotrexate. JAAD Case Rep. 2016;3(1):13-15. Published 2016 Dec 24. doi:10.1016/j.jdcr.2016.10.001
  34. Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261-1272. doi:10.1089/jmf.2014.7000
  35. Maruani J, Geoffroy PA. Bright Light as a Personalized Precision Treatment of Mood Disorders. Front Psychiatry. 2019;10:85. Published 2019 Mar 1. doi:10.3389/fpsyt.2019.00085
  36. Birdsall TC. 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev. 1998;3(4):271-280.
  37. Jacobsen JPR, Krystal AD, Krishnan KRR, Caron MG. Adjunctive 5-Hydroxytryptophan Slow-Release for Treatment-Resistant Depression: Clinical and Preclinical Rationale. Trends Pharmacol Sci. 2016;37(11):933-944. doi:10.1016/j.tips.2016.09.001
  38. 5-HTP. Natrol. https://www.natrol.com/store/5-htp?utm_source=google&utm_network=g&utm_medium=cpc&utm_device=c&utm_geo=9028320&utm_matchtype=e&utm_creative=465360175345&utm_kw=natrol+5+htp&utm_flight=q4fy19&gclid=CjwKCAiAgbiQBhAHEiwAuQ6BklljJXnp9GcDRb7tcCQgN_y_y5-C1xuQpYf_i290NuVB8_7KSUd4UxoCB8cQAvD_BwE. Accessed February 17, 2022.  
  39. Tsao D, Diatchenko L, Dokholyan NV. Structural Mechanism of S-Adenosyl Methionine Binding to Catechol O-Methyltransferase. PLoS One. 2011;6(8). doi:10.1371/journal.pone.0024287
  40. Baziar S, Aqamolaei A, Khadem E, Mortazavi SH, Naderi S, Sahebolzamani E, Mortezaei A, Jalilevand S, Mohammadi MR, Shahmirzadi M, Akhondzadeh S. Crocus sativus L. Versus Methylphenidate in Treatment of Children with Attention-Deficit/Hyperactivity Disorder: A Randomized, Double-Blind Pilot Study. J Child Adolesc Psychopharmacol. 2019 Apr;29(3):205-212. doi: 10.1089/cap.2018.0146. Epub 2019 Feb 11. PMID: 30741567.Blind, Sham-Controlled, Pilot Study of Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 2019 Apr;58(4):403-411.e3. doi: 10.1016/j.jaac.2018.11.013. Epub 2019 Jan 28. PMID: 30768393; PMCID: PMC6481187.